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Chapter 1
Introduction

The physical optics (PO) scattered field from perfectly electrically conducting structures is
limited in accuracy because the PO current fails to closely approximate the exact current
near surface discontinuities such as edges. The accuracy of the PO scattered field can
be significantly increased by adding the fringe wave (FW) field, which takes into account
the distortion of the current caused by edges. An approximation to the FW field can be
calculated by integrating physical theory of diffraction equivalent edge currents[1],[2] along
the illuminated part of the edges of the structure. These edge currents are determined from
an integration of the FW current (the exact current minus the PO current) along incremental
strips on the canonical wedge or half-plane. Throughout this report only physical theory
of diffraction equivalent edge currents will be considered, and these will be referred to as
EEC’s.

Closed-form expressions for EEC’s have been derived for un-truncated (infinite) incre-
mental wedge strips by Michaeli [2], Mitzner [3], and Shore and Yaghjian [4]"; these EEC’s
will be called un-truncated EEC’s in this report. For the analysis of bistatic radar scattering
the un-truncated EEC’s give an inadequate correction to the PO field due to the presence
of the Ufimtsev singularity [2] and the discontinuities of the calculated FW field across the
current layers associated with the un-truncated strips. The Ufimtsev singularity occurs when
the direction of observation is the continuation of an incident field grazing the face of the
structure.

The above-mentioned problems associated with the un-truncated EEC’s are eliminated
by using truncated (finite) strips. Closed-form expressions for EEC’s have been derived for
truncated incremental half-plane strips by Breinbjerg [5] and by Shore and Yaghjian [6]. Cote
et al. [7] have implicitly derived EEC’s for truncated incremental strips on a right-angled

Received for publication 3 Oct 1995
1The results by Mitzner [3] and Shore and Yaghjian [4] are expressed in terms of incremental length
diffraction coefficients, which are closely related to, and can easily be put in the form of, EEC’s.




wedge. Michaeli [8] seems to be the only one who has derived EEC’s for general truncated
incremental wedge strips; the EEC’s based on truncated wedge strips will in this report be
called truncated EEC’s. They apply to the analysis of bistatic radar scattering from three-
dimensional structures with flat faces. However, from theoretical considerations, as well as
numerical calculations, it appears that Michaeli’s truncated EEC’s contain non-removable
singularities which give rise to numerical problems and thus hamper their application. The
singularities are caused by the mathematical procedure applied to obtain closed-form expres-
sions, and they occur for special directions of incidence and observation and for zero strip
length.

In this report new truncated EEC’s are derived. These EEC’s do not have the above-
mentioned singularity problems of the previously reported expressions [8], that is, they are
well-behaved for all directions of incidence and observation and they take a finite value
for zero strip length. The new truncated EEC’s are thus well-suited for application to the
analysis of bistatic radar scattering from three-dimensional structures with flat faces.

The report is organized as follows. In Chapter 2 the concept of truncated EEC’s is
introduced. In Chapter 3 it is explained how Michaeli’s truncated EEC’s are derived and his
final expressions are presented. The derivations that lead to the new truncated EEC’s are
performed in Chapter 4, and finally, Chapter 5 presents numerical examples to illustrate the
differences among the fields calculated from the method of moments (applied to the magnetic-
and electric field integral equations), the un-truncated EEC’s, Michaeli’s truncated EEC’s,
and the new truncated EEC’s.




Chapter 2

The Cencept of Truncated EEC’s

The configuration under consideration is a perfectly conducting three-dimensional structure
with flat faces illuminated by a plane wave (see Figure 2.1). In the far field of the structure a
high-frequency approximation to the FW field (the total scattered field minus the PO field)
is calculated from a line integral along the illuminated part C of the edges of the structure.
The truncated EEC’s are represented by the magnetic current Mz and the electric current
It so that the electric FW field is given by [1]

Efw~jk/[ZIT§x(§xf)+MT§ xtA]SEB(Lks)dl (2.1)
c 4rs
where j is the imaginary unit (the time factor exp(jwt) is suppressed), k is the wave number,
and Z is the intrinsic impedance of the ambient medium. Furthermore, $ is the unit vector
in the direction of the far-field observation point, s is the distance between the integration
and the observation points and { is the edge unit tangent vector. The two adjoining faces
at each edge are denoted by A and B. It is convenient to introduce a local rectangular ryz-
coordinate system with origin at the integration point at the edge. This coordinate system
is associated with face A; the unit vector Z is in the plane of face A, § is the outward normal
unit vector of this face and 2 equals the edge unit tangent vector £ (see Figure 2.1). Using
this rectangular system, the vector $ is expressed as § = Zsin 8 cos ¢ + ¢ sin Bsin ¢ + £ cos 8
where 3 and ¢ are the polar and azimuthal angles, respectively. The propagation vector 3¢ of
the incident plane wave is expressed as 89 = — sin By cos ¢o — ¥ sin Bo sin ¢ + 2 cos Bo where
Bo and ¢¢ + 7 are the polar and azimuthal angles, respectively (see Figures 2.1 and 2.2).
Face B is located in the plane described by ¢ = N7 where N7 is the exterior wedge angle.
‘Throughout the report it is assumed that 1 < N < 2.

The truncated EEC’s are determined by a sum of two contributions, one from each of

the faces A and B
My = Mj+ME (2.2)




Figure 2.1: Three-dimensional view of a flat face of a three-dimensional structure. The
truncated incremental strip extends from the leading edge to the trailing edge and is directed
along the unit vector 4. The directions of incidence and observation are denoted by 3, and
3, respectively. N7 is the exterior wedge angle and it is assumed that 1 < N < 2.
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Figure 2.2: Two-dimensional view of the configuration shown in Figure 2.1 in the plane
z=0.




Ir = I#+1E . (2.3)

Henceforth, the superscripts A and B refer to the contributions from the faces A and B,
respectively. In this report the contribution from face A will be derived in detail, and the
contribution from face B is then obtained from the result for face A using a substitution
technique.

The contribution from face A to the truncated EEC’s, M# and I#, is calculated analyt-
ically by integrating the FW current on face A of a wedge appropriately conforming to the
structure along a truncated incremental strip with the length I#4. The strip extends from the
leading edge (the edge at which the EEC’s are placed) to the trailing edge and is directed
along the unit vector 4# which is the intersection of the Keller cone and the face A, as shown
in Figure 2.1. However, the integration of the FW current along the truncated incremental
strip cannot be performed exactly in closed form and thus, an asymptotic calculation is
necessary. To this end, the truncated EEC’s are expressed as the difference between the
un-truncated EEC’s and the correction EEC’s,

MT = MUT—Mcor (2.4)
IT = IUT_Icor- (2’5)

Michaeli [2],[8] found that the un-truncated EEC’s can be expressed exactly in closed form
whereas closed-form expressions for the correction EEC’s can only be obtained using an
asymptotic technique. In this report Michaeli’s un-truncated EEC’s are used but a new
asymptotic calculation of the correction EEC’s is performed because Michaeli’s correction
EEC’s contain singularities that give rise to numerical problems.

The contribution from face A to the un-truncated EEC’s, M{y and If}z, is obtained by
integrating the FW current on face A along an un-truncated incremental strip. The strip
extends from the leading edge and is directed along 4. Michaeli found that [8, egs. (3)-(7)]

A . ,sing__,
= - 2.6
My = ~Zsinfo— ﬁKx (2.6)
I{; = sinBoK? — sin f,cot B cos K2 (2.7)
with
KA = / J{wA exp(jkus - i) du (2.8)
0

where JJ{,’;"A denotes the - and z-components of the FW current on face A.
Similarly, the contribution from face A to the correction EEC’s, MA_and T4, is obtained
by integrating the FW current on face A along another un-truncated incremental strip. This




strip extends from the point of truncation at the trailing edge and is directed along @4.
Thus,

sin ¢

A _ _ge A
M., = —Zsinf o ﬂL’ (2.9)
I2 = sinfBoL? — sin B cot B cos pLA (2.10)
with
L, = /J,{,‘:’A exp(jkus - 4*) du. (2.11)

Michaeli [8] calls the correction EEC’s the second-order EEC’s but has no designation for
the truncated EEC’s. In contrast to Michaeli’s approach, the correction EEC’s in this report
are placed at the leading edge instead of the trailing edge.

The truncated EEC’s take into account the first-order and part of the second-order edge
diffraction. The entire second-order diffraction is not taken into account because the FW
current excited at the trailing edge is neglected. It is possible to derive EEC’s that take into
account the FW current excited at the trailing edge by employing the procedure introduced
by Breinbjerg [5]. However, this is not the concern of this report.




Chapter 3

Previous Results

In this chapter the expressions for Michaeli’s truncated EEC’s are discussed. To understand
the approach used for the derivation of the EEC’s, the expressions for the exact FW current
on face A of the wedge are dealt with first.

3.1 The Exact Fringe Wave Current on Face A of the
Wedge

The z- and z-components of the FW current on face A of the wedge can be expressed in
terms of a contour integral in the complex ¢-plane [8, eq. (9)] as

JivA = j’R'LNIJzO exp(—jkzcos o)l (3.1)

JiwA - jexp(—igcvzcos Bo) (—gz:hslirﬂlo% I, + Ha cot fo 13) (3)
with

IL, = Aﬁexp(jX cos§) d¢ (3.3)

I = /F ;@ﬂ;’l—%@exp(jx cos &) d¢ (3.4)

I = /F ﬁéﬁ)——%exp@x cos €) de. | (3.5)

In these expressions I' is the steepest descent path through = (see Figure 3.1) and X =
kzsin fo. Furthermore, H,, and E,, are the z-components of the incident magnetic and
electric field, respectively, at the origin of the local zyz-coordinate system.

7




Figure 3.1: The steepest descent path T'.

The exact FW current given by (3.1) and (3.2) is found in the following way. First, the
total field is found for illumination by an electric and magnetic z-directed line source. This
is achieved by employing an expansion in terms of eigenfunctions [9, sec. 3.3]. The solution
for plane wave TE and TM (with respect to z) incidence is next obtained by moving the
line source to infinity. The solution for oblique incidence is obtained by employing the
substitution technique described by James [9, p.127] and Bowman et al. [10]. Next, the
solution for the total field is expressed in terms of contour integrals and the diffracted field is
finally arrived at by deforming the integration contour. Applying the result for the dlffracted
field, the components (3.1) and (3.2) of the FW current are easily found.

3.2 Un-Truncated EEC’s

The calculation of the contribution from face A to the un-truncated EEC’s (2.6) and (2.7)
is accomplished by insertion of the expressions (3.1) and (3.2) for the exact FW current
into the integral K2, in (2.8). Next, the order of integration is interchanged and the inner
integral is calculated analytically. Finally, the integration contour T' is distorted and closed
at infinity and thus the integral can be calculated by applying the residue theorem. The
results are [2, egs. (4)-(7)],

2jZHypsing {U(m — ¢o) sin *5*
MA 3.6
UT = Zsin Bosin B (p + cos ¢o + N sin o cos I ~ cos ‘f\}’ ) (36)




and

: I . do
I{}T = N ﬂo(co:]L;,_‘l — %) (Hzosj;naN‘ (cot Bcos ¢ — pcot fo) — E;;S:I-BJ:—)
z sii];jg: ; fgs) ) (Hzo(cot B cos ¢ + cot B cos ¢g) — %%1—%)—)
_2Jk 5::1; 510[1;!:0 (3.7)
where U(z) = 1 for £ > 0 and zero for z < 0. Furthermore,
J= sin By sin B cos ¢ + cos Bo(cos B — cos fo) (3.8)

sin2 ,30

and « is the solution to g = cos a determined by

a = —jLog(p ++/p? —1) (3.9)
with
~ Logz = In|z| 4 Argz : (3.10)

and —7 < Argz < 7. The square root in (3.9) is defined as
2 1 —|ve -1 , p<-1
K 1_{j|\/1—#2l , —l<p<l (3.11)

The results for M} and IF; are obtained from the above expressions by replacing fo with
7 — Bo, B with m — B, ¢o with N= — ¢o, and ¢ with ¢ — Nx. Using these substitutions it is
noted that the last term in (3.7) is canceled by its counterpart in Iffr.

The singularities of M{r and Ifir have been carefully investigated by Michaeli [2]. The
only non-removable singularity is the Ufimtsev singularity [2] which occurs when g = 1
(a = 0) and simultaneously ¢o = 7, that is, when the direction of observation is the con-
tinuation of an incident field grazing the face of the structure. The Ufimtsev singularity is
caused by the lack of phase variation in the integrand of K7, in (2.8) for large values of the
integration parameter u and is eliminated by using truncated strips.

3.3 Michaeli’s Correction EEC’s

The approach used by Michaeli [8] to calculate the contribution from face A to the correction
EEC’s, MA_in (2.9) and I4, in (2.10), is as follows. First, the expressions for the exact
FW current (3.1) and (3.2) are inserted into the integral L7, in (2.11). Next, the order

z,2
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of integration is interchanged, the inner integral is calculated analytically and finally, the
resulting integral is evaluated asymptotically. However, there are two problems associated
with this approach. First, the integrand of the resulting integral contains many poles and
this fact complicates the task of obtaining an asymptotic expression without non-removable
singularities. In fact, Michaeli’s asymptotic evaluation results in expressions that contain
non-removable singularities for N # 2. These singularities occur for special directions of
incidence and observation. Second, the asymptotic evaluation implies that when N # 2
the resulting expression has a non-removable singularity for L = 0, where L = ki4sin® f,.
The above-mentioned singularities give rise to numerical problems and thus hamper the
application of the expressions.

To illustrate the above-mentioned problems, Michaeli’s asymptotic evaluation of M2 is
presented below. To distinguish Michaeli’s result from the expressions that will be derived
in this report, Michaeli’s result is denoted by MA..

After the interchange of the order of integration and the analytical calculation of the
inner integral, the expression

MA = Z H,sin ¢
r ™ jNxksin fo sin 3

is arrived at where V is the contour integral

_ [ —isin§ exp(L(u+ cos))
V= /F (cos 1—%— — cos %)(p + cos §) d (3.13)

(3.12)

with the contour I' shown in Figure 3.1. Next, the substitution

N 4
s = —\/j:,cos 5 | (3.14)

is employed to transform the steepest descent path I' to the real s-axis whereby the integral
V in (3.13) becomes :

V= \/j: exp(GL(k — 1)) / W (€) exp(—Ls?) ds (3.15)

where /7 means exp(j%) and
in &
sin
W(é) =~ 3 r N¢o .
sin 3(cos 3 — cos £ )(p + cos §)
To isolate the singularities of W(£) close to the saddle point { = 7 (s = 0), Michaeli applied
a decomposition of the form
C Ds+ E
W(€) =
(€) P tEp

(3.16)

+5(6) (3.17)

10




with the assumption that S(£) is a regular function,

C Ds+ E

PR (3.18)

S =w(¢) -

In the expression (3.17) for W(¢), @ = v2cos % and b = +/2sing. The first term on
the right side of (3.17) takes into account the pole of (cos £ — cos %)"1 near the saddle
point (¢ = 7) when ¢ = 7. The second term on the right side of (3.17) takes into account
the two poles of (4 + cos¢)™? near the saddle point when a =0 (recall that ¢ = cosa).
There is a problem associated with the decomposition (3.17). The problem occurs when the
decomposition constant E is to be determined’. To calculate this constant one multiplies
equation (3.17) by s + 7b* on both sides. It is seen that p + cos ¢ — 0 and s? 4 jb* — 0 for
¢ — 7 + . Thus, by employing the fact that S(£) is regular and by calculating the limits
for £ = © — a and £ — 7 + a, and combining the two results, the constant E is determined.
However, if N # 2 and @ = 7 the quantity sin & (sin §)~! appearing in (3.16) tends to infinity
for £ = 7 + a and this singularity is not accounted for by the decomposition (3.17). Since
S(¢) is assumed regular the singularity for « = 7 will appear in the decomposition constant
E. For N = 2 the quantity sin fv-(sin %)‘1 equals 1, and no problem occurs. Further, for
¢o = —(7 + a) + 27 N the quantity (cos fv- —cos %")"1, which appears in the expression (3.16)
for W(£), goes to infinity for { — 7 + a. If N = 2 this singularity will be accounted for by
the term C(s + \%)'1 in (3.17). If, on the other hand, N # 2 there will be no term on
the right side of (3.17) that will take this singularity into account and thus, the singularity
appears in E. In summary, the decomposition constant E contains two singularities when
N # 2. These occur for @ = 7 and for ¢o = —(7 + ) + 27 N.

The first two terms on the right side of (3.17) are integrated explicitly using (3.15) and
expressed in terms of Fresnel functions. The third term of (3.17) is integrated asymptotically
for L > 1 using the standard steepest descent technique [11]. For N # 2 this technique
implies that the resulting expression tends to infinity for L — 0. This can occur for edge
points close to corners in the evaluation of the integral (2.1). As discussed by Michaeli [8] it
is possible to avoid small values of L by omitting part of the edge which is close to corners
in the evaluation of the integral (2.1). However, this approach is not satisfactory since the
calculated field will depend on the ratio of the edge being omitted. For N = 2 the asymptotic
calculation equals the exact solution and thus, no singularity occurs when L = 0.

To summarize, the singularities occurring for ¢o = —(7+a)+27N and o = 7 are caused
by the decomposition of the integrand (3.16) that contains many poles. It is noted that
the quantity p + cos¢ in the denominator of (3.16) is caused by the analytical calculation
of the inner integral after the order of integration is interchanged (see the summary of

11t is not necessary to determine the constant D because the odd term ;5%5 vanishes when integrated
from —oo to oo, see (3.15).

11




Michaeli’s approach at the beginning of this section). Thus, the interchange of the order
of integration and the following analytical calculation of the inner integral introduce more
poles to the integrand. Furthermore, the singularity for L = 0 is caused by the use of the
standard steepest descent technique on the integral (3.15) containing the exponential factor
exp(—Ls?). This exponential factor is introduced by the analytical calculation of the inner
integral. It is therefore seen that the singularity problems of Michaeli’s expressions are
basically caused by the interchange of the order of integration when the integral Ljiz in
(2.11) is calculated. In the following chapter the integral L2, will be calculated without
interchanging the order of integration. By this approach the singularity problems described
in this section are avoided.

The asymptotic results for M4 and T4

cor?

valid for L > 1, are [8]

' Z H,ysin ¢exp(jL(p — 1)) [ —27 Nsgn(cos 4’—) o
A _ 0
Meor = 57 Nksin fosin B i toosge  (V2L|cos )
27 sin ZZ& sin 7t
- K(/L(1 -
sin o (cos-—ﬁ-— — COS .QO. + COS-J:— co @) ( ( /L))
27 sin &
V3L 3.19
+ JL (cos & — cos %)(p-—l)] (3.19)
A 2exp(jL( — 1)) [ Nsgn(cos &)
o jkN sin By § + cos @o
‘ (—H;o(cot B cos ¢ + cot By cos ¢g) + EZZO Smﬂ%) K(V2L|cos —[)
Hyo sin 5% sin ZE=
t Bo — cot
[sina (cos I5& — cos %g cos T2 — cos ﬂ (p cot Bo — cot B cos ¢)

l'j".{()sini‘}’v0 1
- K(/L(1—p
+ Zsin fo ( L 9 cos T — cosﬂﬂ (VI

T=a _ cog b0
cos I — cos 7

H, sin %:(cot B cos ¢ — cot fo) } (3.20)
V2rjL(cos & —cos R)(p—1) ) |
In these expressions sgn(a) = l%l and
1
R 3.21
K(z) = F(z) ~ 5- = (3.21)

where F' is a modified Fresnel function
F(z)= \/};‘exp(jmz) /exp(—jtz) dt. (3.22)

12




It is noted that the expressions for M2, and I’ contain non-removable singularities when

N # 2. These singularities occur for L =0, a = 7, and ¢ = —(7 + a) + 27N.
The expressions for ME. and IB. are obtained by applying the substitutions listed after

equation (3.11). Furthermore, the strip length on face A, I4, must be replaced by the strip
length on face B, I5.
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Chapter 4

Derivation of New Correction EEC’s

As summarized in Section 3.3 the singularity problems associated with Michaeli’s correction
EEC’s are caused by the interchange of the order of integration when calculating the integral

Lf,z in (2.11). In this chapter another approach is used to calculate L;‘,z. Instead of applying

the exact expressions for the FW current in the integral Lﬁ'z, the asymptotic expressions

for the FW current are employed. Thus, the first section in this chapter deals with the
determination of the asymptotic expressions for the FW current.

4.1 Uniform Asymptotic Expressions for the Fringe
Wave Current on Face A

To obtain a uniform asymptotic expression for the FW current, the steepest descent tech-
nique [11] is applied to the integrals I3, I, and I3 given by (3.3)-(3.5). The steepest descent
path T is first transformed to the real s-axis using the substitution (3.14)

s= —\/gcosg (4.1)

where /7 means exp(j%). For I; this yields
I = \/2j exp(=3X) [ T(€)exp(~Xs?)ds (42)

where

7€) = — ok (4.3)
" sin £(cos & — cos 22)° .
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To isolate the pole of the integrand near the saddle point (¢ = 7) a decomposition technique
similar to the one applied by Michaeli [8, eq. (29)] is used. Thus, T'(¢) in (4.3) is written as
a sum of a simple pole term and a regular term,

A

T(€) = 4
©=55z +RO (4.4
where a = v/2 cos 9‘2& and the regular term is
A
= — . 4.5
RO=TO - = (4.5)

The poles of the first term on the right side of (4.4) are determined by ¢ = ¢ + 47n, n
being an integer, and thus, the pole at ¢ = 7 is isolated for ¢ = 7. The decomposition (4.4)
contains only one simple pole term and is thus simpler than the decomposition presented
in Section 3.3. Due to the simpler decomposition, the singularity problems encountered in
Section 3.3 will not appear.

The decomposition constant A is determined from

\/-Jgsin £(—cos$ + cos %) _N

A= 1 = . 4.6
£-1-'I§>Io sin g(cos 7§v' — cos %‘l) V27 (46)
The integration of the first term on the right side of (4.4) is written as
e X <2 — ¥ X <2
JeRXe) g o =t [ eRl X g, (4.7)
2 1% Vid, &-%

The integral on the right side of (4.7) is then evaluated using [12, eq. (12)] and expressed in
terms of the modified Fresnel function (3.22)

F(z) = \/jrjexp(jzz) /exp(—jtz) dt (4.8)

x

with the result

7 M ds = 2jnsgn(a)F(|a]VX) (4.9)
e STV

where sgn(a) = l:—l Since the function R(¢) is regular near the saddle point, the standard
steepest descent technique is applied to the second term on the right side of (4.4),

o0

/ R(f)exp(-—st)dSNR(n)\/; for X>1. - (4.10)

-0
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Thus, the asymptotic expression for I is

L ~ -2jxNexp(—jX)sgn(a)F(la|vX)

257 ; sin = N
\/— -jX I : 4.11
+ X exp(=J )(cos%—cos%‘,’--*_\/ia) (4.11)

The same procedure is used to calculate the asymptotic expressions for I, and I3. The results
are (see Appendix A)

—2j N7 sin ¢oexp(—j X) 1
I % sgn(a) F(Ialvl X) 5/ Xal (4.12)
I; ~ -2j7rngn(a)cos¢oexb(—jX)F(|aIVX)
257 . N cos ¢p sin %
— —3X — . 4.13
+ X exp(=J )( V2a cos-}(,——cos%g) (4.13)

The asymptotic expressions for Jf**4 in (3.1) and J*4 in (3.2), valid for X = kzsin By > 1,
are obtained by employing the above results for I, I, and I3,

w,A L3N S ¢0 . ¢0
JI ~ —2Hyexp(—jki -r)[sgn(cos?)F(\/Qkxsmﬂdcosfl)

1 1 sin %
- : - 4.14
V2jmkzsin fo (2008%—0 * N(cos § — cos %))] (4.19)
and

JIvA ~ —2exp(—jki? - 7) —Ei(-)m — Hyg cot By cos ¢o
Z sin By

¢o ./ : $o
-sgn(cos ?)F( /2kz sin fo| cos _é_l)
EzO Sin ¢0
~ Zsin fo2+/2jmkz sin fo cos £

+ H.zo cot :Bo Cos ¢g _ sin % . (4.15)
V2jmkzsinfo \2cos £ N(cos & — cos £2)
where 7 = #z + 2z and 4# = Zsin By + 2 cos fp. The formulas for the FW current can also
be expressed in terms of the function K(z) in (3.21),
1
217z

K(z) = F(z) - (4.16)
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where K(z) ~ 0 for £ > 3. One finds
JIvA  ~ —2H,exp(—jkit - 7) (sgn(cos %)K(y/?kx sin fo| cos %I)

sin ﬁ
- 4.17
N+/2jmkz sin Bo(cos % Z- — cos %)) (4.17)

JivA ~ _Qexp(—jkit ) [(E;:;n; > — Hy cot Bp cos ¢0)

-sgn(cos %Q)K(\/ka sin fo| cos %’-I)

H cot Bosin &
" N/Zjrkzsin Bo(cos & — cos &) |
The representations (4.14) and (4.15) are well-suited for the analytical calculation of the FW

current in the limit ¢o — 7, whereas using the equations (4.17) and (4.18) is more convenient
to obtain expressions for the FW current when /2kz sin | cos ﬁd;ﬁl > 3.

(4.18)

4.2 Calculation of the Integrals L2 and L%

To derive the results for M4 _ in (2.9) and T2, in (2.10), the expressions for L2 and L4 given
in (2.11) are needed. First, L2 is calculated. To this end the z-component of the asymptotic
FW current (4.14) is inserted into the integral L2. The integration variable u of L2, is the
distance along the Keller cone and thus the substitutions z = usin fy and z = ucos ffy are
applied. Since the asymptotic expression for the FW current applies for kusin® By > 1 the

asymptotic result for L2 applies for L = ki4sin? By > 1,

A = / T exp(kus - 44) du
A

~ —2H,sgn(cos ?22) / F(V2ku sin o] cos %El)exp(—jku sin? Bo(1 — ) du
1A

2H, 1 sin % 7exp(———jku sin? Bo(1 — p)) du
V2jmksinfo \2cos £~ N(cos & — cos £) Vu

(4.19)
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where the identity 1 — §- 44 = sin? Bo(1 — ), with g defined in (3.8), has been applied. The
two integrals in (4.19) are evaluated in Appendix B. Hence,

z jksin? By i+ cos ¢

‘/_l COS F(\/Z(T;—))
V2 1 sin % -
vy (2003 % * N(cos Z_ cos %)) F(yL(1 u))}- (4.20)

Second, L# is calculated. The asymptotic expression for the z-component of the FW current
(4.15) is inserted into the integral L2 in (2.11) to yield

4 2exp(il{s = 1) H [sgn(ws?)(p(\/iacosfﬂl)
2

oo
4 = /Jf’fwexp(jkué-ﬁA)du

( Eosin ¢o

do
7 o fo — H,g cot B cos ¢o) sgn(cos —)

2

. /F(v2ku sin fBo| cos %)-D exp(—jkusin® Bo(1 — p)) du
IA

EzO sin ¢o 1
———— — Hyocot
[( Z sin fy o cot fipcos go 257k sin By cos %Q
N 2H, cot fosin % ]
N+/2jrksin fo(cos & — cos L)

,7exp(—jku sin” fo(1 — p))
14 \/E

When the results of Appendix B are applied, L4 is expressed as

2exp(jL(p — 1)) »0 Sin ¢o Sgn(cos 2)
L} ~ Tk sin? fo {( Zsin By o cot B cos ¢o) +cos¢ F(\/—| cos —])

cos £ cos bo cos ¢o sin
Hyo cot * y
+[ 0% ﬂo(#-i—cos(ﬁo 2cosm+N(C°S__C°Sm))
< dol, _ F L(1 —
4 Eosin 9 (p — 1) ] V2 \/ ( )} (4.22)

Z sin ﬂo(p + cos ¢o) VIi—yp

(4.21)
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4.3 Expressions for the Correction EEC’s

The asymptotlc expressions for the contribution from face A to the correction EEC’s, M4,
in (2.9) and I, in (2.10), are now obtained by employing the results for L2 in (4.20) and
L4 in (4.22),

MA ~ 2ZH=0 sin ¢eXp JL(/I’ — 1)) [—sgn(cos )F(\/_l cos ¢Ol)

o Jksin Bsin B 1 + cos ¢o
Vi—p V2sin & 5 ) - ]
(\/_(;t-i-cos(ﬁo)cos?s— N+y/T = p(cos % — cos%) F(JL(1 - p))

(4.23)

2exp(jL(p — 1))
A ~ 7% 5 Bo(ps T c0s 60) [sgn(cos )F(\/_—I cos )
. (Ezo sin ¢0

Zomge H,o(cot Bo cos ¢ + cot S cos ¢))

FE,4sin i‘;,— H,

\/2(1 - )F(\/L(l p))( Zeinfo + %(cot Bo cos ¢o + cot B cos ¢)

+H;,g sin % (4 + cos ¢o)(cot Bo — cot B cos ¢))]
N(cos % — cos £2)(1 — y) '

(4.24)

The final expressions for the truncated EEC’s are obtained by first calculating M4 and I#
by subtracting the above results, (4.23) and (4.24), from the un-truncated EEC’s, (3.6) and
(3.7), as shown in (2.4) and (2.5). Second, the contribution from face B is calculated using
the results for M# and I3 by replacing o with © — Bo, B with © — 8, ¢o with Nz — o, ¢
with N7 — ¢, and [4 with IZ. Third, the contributions from the two faces are added in order
to determine My and Ir, see (2.2) and (2.3). Finally, these expressions are inserted into the
radiation integral (2.1) to determine the approximate FW field from the truncated EEC’s.
It is noted that MZ_ in (4.23) and IZ, in (4.24) do not contain singularities for ¢ = 7
(b =-1),¢0 = —(r+ @) + 27N, and L = 0 as do the previously reported expressions (3.19)
and (3.20). Using the result of [2, app. II] it is shown that when @p # 7 the quantities
sin ¢(1 — p)"]? a.nd (cot Bo — cot Bcos ¢)(1 — u)'%, which appear in the expressions for M4,
in (4.23) and IZ, in (4.24), remain bounded for g — 1. If ¢o = 7 and g — 1, M2 and IA,
are s1ngu1ar but this singularity (the Ufimtsev singularity) is canceled by the singularity in
M{r and Ifi; given by (3.6) and (3.7), respectively. This means that My and Ir are valid
for all directions of incidence and observation. Besides, the fact that M4 and I are finite

for L = 0 implies that no numerical problems arise when the strip length becomes small.
This can occur for edge points close to corners of the structure. However, the field calculated
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from the truncated EEC’s for these edge points is a poor approximation to the exact field
for two reasons: First, the asymptotic expressions for the correction EEC’s are invalid and
second, the distortion of the current on the structure near corners is not taken into account.

4.4 Special Cases

If it is assumed that the arguments v2L|cos 2| and /L(1 — ) of the modified Fresnel
functions in (4.23) and (4.24) are so large that the asymptotic formula [8, eq. (40)]

P~ \1/;7: (4.25)
can be applied, M4, in (4.23) and I2_ in (4.24) become
. —V2Z Hysin ¢sin Z exp( L(s — 1)) (4.26)
cor jksin Bsin fo/7w LN (1 — p)(cos 7 — cos %)
7 V2H, sin 7 (cot By — cot B cos @) exp(j L(p — 1)) (4.27)

o 7 jksin Boy/7LN (1 — p)(cos % — cos $2)

Except for ¢o = —(7 + a) + 2o N and a = 7 (¢ = —1) these expressions are the same as
those obtained using Michaeli’s correction EEC’s [8].

For the half-plane, that is, N = 2, the expressions for M2 in (4.23) and I4_in (4.24)
simplify. Besides, the uniform asymptotic FW current found in Sectlon 4.1 equals the exact
FW current. This means that M4_in (4.23) and IZ, in (4.24) are valid for any value of L.

cor cor
The correction EEC’s, that is, the sum of the contributions from faces A and B, become

_ 4ZHasin gexp(GL(s = 1) ¢ go
Moo = Jksin Bsin fo(p + cos ¢o) (—sgn(cos 2 JF(V2L]|cos 2 D

V2 cos 1’29-
+ L F(/L(1- 1) (4.28)
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and

_ 4Epsin %exp(jL(y -1)) ( éo do
Loy = 7%Z sin Bo(s + <o go) 2| cos 5 [F(V2L| cos 5 D)

V(1= )F(G/I = )
4H, exp(jL(p — 1))

(—sgn(cos %)

Jksin Bo(p + cos ¢o)
+(cot fo cos @o + cot B cos ¢)F(\/2_L-I cos %QD
V2 cos £ (cot B cos ¢ — p cot Bo)
H FG/L— 1) (4.29)

which are the same results obtained using Michaeli’s expressions [8]. The expressions (4.28)
and (4.29) are further verified by letting 4 = 0. In this case Mc; = Myr and I = Ipr.
Thus, the truncated EEC’s, M7 in (2.4) and Ir in (2.5), are zero which is the result obtained
by integrating the FW current along a strip with length zero.
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Chapter 5

Numerical Results

In this chapter the field scattered by a two-dimensional perfectly conducting triangular cylin-
der is calculated using both the EEC’s and the method of moments applied to the magnetic-
and electric field integral equations (MFIE and EFIE, respectively). The consideration of a
two-dimensional structure is convenient because it has no corners. The purpose of perform-
ing the numerical comparison is twofold. First, it is shown that the un-truncated EEC’s are
inadequate for bistatic analysis. Second, the singularity problems associated with Michaeli’s
expressions for the truncated EEC’s are illustrated and it is shown that these singularities
are not present in the new truncated EEC’s derived in this report.

Both the FW field and the total scattered field are calculated. By considering the FW
field it is possible to see how well the EEC’s approximate the exact field in regions where
the PO field is large compared to the FW field. The FW field is, however, not used without
the PO field in practice. Therefore, the total scattered field is also calculated to illustrate a
practical application of the EEC’s.

5.1 The Fringe Wave Field

The lengths of the three sides of the triangular cylinder are all equal to 2\, A being the
wavelength, and the illuminating field is a transverse electric (TE) polarized plane wave
with direction of incidence shown in Figure 5.1. The FW field is calculated in the far field
of the structure and expressed in terms of the two-dimensional radar cross section (RCS).
The direction to the far field observation point is determined by the angle ¢. To avoid the
removable singularities in the EEC’s, ¢ is assigned the values 0.14n degrees, n being an
integer ranging from 0 to 359. Figure 5.2 shows the FW field calculated from the difference
between the MFIE solution and the PO solution, and from the un-truncated EEC’s. It is
seen that the un-truncated EEC’s yield a poor approximation to the exact scattered FW
field: The Ufimtsev singularity occurs for ¢=60 degrees and the field is discontinuous across
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the current layers located at =120, 180, 240, and 360 degrees. In addition, discontinuities
at ¢ = 60 and ¢ = 300 degrees exist but these cannot be seen on the RCS plot of Fig-
ure 5.2. However, the phase of the scattered field reveals the discontinuities. Theoretically,
the Ufimtsev singularity should only appear for grazing incidence. However, due to the fi-
nite numerical accuracy the singularity also appears for nearly grazing incidence, as in the
configuration under consideration (see Figure 5.1).

Figures 5.3 and 5.4 show the results when the truncated EEC’s are used. Figure 5.3 shows
Michaeli’s results and in Figure 5.4 the results obtained from the new truncated EEC’s are
shown. From both figures it is seen that the Ufimtsev singularity and the discontinuities
across the current layers disappear. However, Figure 5.3 reveals that five spikes occur in
the far field obtained from Michaeli’s truncated EEC’s when =61, 179, 299, 300, and 301
degrees. These spikes are caused by the non-removable singularities in Michaeli’s expressions.
The spikes at =61, 179, 299, and 301 degrees are caused by the singularity occurring when
$o = —(a+7)+27 N (see the discussion in Section 3.3) which is almost satisfied for edges B
and C (see Figure 5.1). The spike at ¢ =300 occurs because a is close to 7 (see Section 3.3)
for edge B. As noticed from Figure 5.4 no spikes occur when the new truncated EEC’s
are used. However, the agreement between the two methods of calculation is not perfect.
This discrepancy occurs because the truncated EEC’s only take into account part of the
second-order edge diffraction, as explained at the end of Chapter 2, and for TE polarization
the multiple interactions between the edges are significant.

Next, the incident plane wave is assumed to be transverse magnetic (TM) polarized (see
Figure 5.5). Figures 5.6, 5.7, and 5.8 show the comparison among the results obtained from
the difference between the EFIE solution and the PO solution, the un-truncated EEC’s,
and the truncated EEC’s. For TM polarization the electric field has only a component
parallel to the current layers and thus the field obtained from the un-truncated EEC’s is
not discontinuous across these layers. However, the derivative of the field with respect to ¢
is discontinuous. Figure 5.8 shows that the spikes encountered when Michaeli’s truncated
EEC’s are applied (see Figure 5.7) are not present when the new truncated EEC’s are used.
Furthermore, almost perfect agreement between the two methods of calculation is observed
in Figure 5.8. This is because the multiple interactions between the edges are weak for TM
polarization.

In conclusion, the un-truncated EEC’s are inadequate for analysis of bistatic scattering
and the numerical comparison reveals that the new truncated EEC’s, derived in this report,
give a good approximation to the exact scattered FW field even when the distance between
the edges is as small as 2.
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5.2 The Total Scattered Field

First, the configuration shown in Figure 5.1, where the incident plane wave is TE polarized,
is considered. Figure 5.9 shows the total scattered field calculated from the MFIE solution
and from the sum of the solutions obtained using PO and the un-truncated EEC’s. It is
seen that the un-truncated EEC’s yield a poor approximation to the exact scattered field.
In Figure 5.10 the sum of the PO field and the field obtained from the new truncated EEC’s
is shown. The agreement with the MFIE solution is much better than that produced by the
un-truncated EEC’s. Moreover, the agreement between the results obtained using the new
truncated EEC’s and the MFIE solution is much better for the total scattered field than for
the FW field alone shown in Figure 5.4.

Figures 5.11 and 5.12 show the total scattered field when the incident plane wave is
TM polarized, as shown in Figure 5.5. In Figure 5.11 the un-truncated EEC’s are used to
approximate the FW part of the total scattered field and again a poor approximation to the
exact field is obtained. However, when the new truncated EEC’s are used, almost perfect
agreement is achieved (see Figure 5.12).
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Figure 5.1: Cross-section of triangular cylinder with side length 2 illuminated by a TE
plane wave.

) 1 I 1
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Figure 5.2: FW field for the configuration shown in Figure 5.1.
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Figure 5.3: FW field for the configuration shown in Figure 5.1. Michaeli’s expressions are
used to calculate the truncated EEC’s.

20 T T T T T

MFIE minus PO —
10 Truncated EEC’s ----- 7

0

RCS/A (dB)

-40 1 1 1 1 1
0 60 120 180 240 300 360

¢ (deg.)
Figure 5.4: FW field for the configuration shown in Figure 5.1. The new truncated EEC’s

are employed.
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Figure 5.5: Cross-section of triangular cylinder with side length 2 illuminated by a TM

plane wave.
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Figure 5.6: FW field for the configuration shown in Figure 5.5.
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Figure 5.7: FW field for the configuration shown in Figure 5.5. Michaeli’s expressions are
used to calculate the truncated EEC’s.
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Figure 5.8: FW field for the configuration shown in Figure 5.5. The new truncated EEC’s

are employed.
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Figure 5.9: Total scattered field for the configuration shown in Figure 5.1.
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Figure 5.10: Total scattered field for the configuration shown in Figure 5.1. The new trun-

cated EEC’s are employed.
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Figure 5.11: Total scattered field for the configuration shown in Figure 5.5.
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Figure 5.12: Total scattered field for the configuration shown in Figure 5.5. The new trun-
cated EEC’s are employed.
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Chapter 6

Conclusions

New closed-form uniform expressions for physical theory of diffraction equivalent edge cur-
rents have been derived for truncated incremental wedge strips. The new truncated EEC’s
are well-behaved for all directions of incidence and observation. The expressions are asymp-
totic for L > 1, L being a parameter proportional to the strip length; however, they take a
finite value when L is zero. This implies that the new truncated EEC’s are well-suited for the
analysis of bistatic radar scattering from perfectly conducting three-dimensional structures
with plane faces.

Numerical results were presented showing that the use of truncated strips is necessary
for the analysis of bistatic radar scattering. Furthermore, it was shown that the singularities
occuring in the previously reported truncated EEC’s are not present in the new truncated
EEC’s derived in this report.

31




References

[1] Michaeli, A. (1984) Equivalent edge currents for arbitrary aspects of observation, IEEE
Trans. Antennas Propagat., 32, no. 3:252-258,
and (1985) Corrections to “Equivalent edge currents for arbitrary aspects of observa-
tion,” IEEE Trans. Antennas Propagat., 33, no. 2:227.

[2] Michaeli, A. (1986) Elimination of infinities in equivalent edge currents, part I: Fringe
current components, IEEE Trans. Antennas Propagat., 34, no. 7:912-918.

[3] Mitzner, K. M. (1974) Incremental Length Diffraction Coefficients, Technical Report
AFAL-TR-73-296, Northrop Corporation.

[4] Shore, R. A. and Yaghjian, A. D. (1988) Incremental diffraction coefficients for planar
surfaces, IEEFE Trans. Antennas Propagat., 36, no. 1:55-70,
and (1989) Correction to “Incremental diffraction coefficients for planar surfaces,” IEEE
Trans. Antennas Propagat., 37, no. 10:1342.

[5] Breinbjerg, O. (1992) Higher ordef equivalent edge currents for fringe wave radar scat-
tering by perfectly conducting polygonal plates, IEEFE Trans. Antennas Propagat., 40,
no. 12:1543-1554.

[6] Shore, R. A. and Yaghjian, A. D. (1992) Incremental diffraction coefficients for plane
conformal strips with application to bistatic scattering from the disk, Journal of Elec-
tromagnetic Waves and Applications, 6, no. 3:359-396.

[7] Cote, M. G., Woodworth, M. B., and Yaghjian, A. D. (1988) Scattering from the per-
fectly conducting cube, IEEE Trans. Antennas Propagat., 36, no. 9:1321-1329.

[8] Michaeli, A. (1987) Equivalent currents for second-order diffraction by the edges of per-
fectly conducting polygonal surfaces, IEEE Trans. Antennas Propagat., 35, no. 2:183-
190.

[9] James, G. L. (1976) Geometrical Theory of Diffraction for Electromagnetic Waves, Peter
Peregrinus Ltd.

33




[10] Bowman, J. J., Senior, T. B. A., and Uslenghi, P. L. E. (1969) Electromagnetic and
Acoustic Scattering by Simple Shapes, North-Holland Publishing Company, p. 90.

[11] Felsen, L. B. and Marcuvitz, N. (1973) Radiation and Scattering of Waves, Prentice
Hall, Englewood Cliffs, N. J., Chap. 4.

[12] Gennarelli, C. and Palumbo, L. (1984) A uniform asymptotic expansion of a typical
diffraction integral with many coalescing simple pole singularities and a first-order saddle
point, IEEE Trans. Antennas Propagat., 32, no. 10:1122-1124.

34




Appendix A

Asymptotic Expressions for I, and I3

Using the same procedure that was used for the asymptotic calculation of I; in Section 4.1,
I, is expressed as

o _ 2 oo
I = \/51_'exp(-—jX) A, / ﬂ(—-)7{—3—2033 + ] Ry(€) exp(—Xs?) ds (A.1)
% v oo
with
_ sin fﬂ(_ cos§ +cosL)  _ Nsind,
A2 = lim P 3 o = . do (A2)
é~do  sin §(cos 3 — cos §7) V27 sin £
and
sin A,
Ry(¢) = - . A3
2(6) (cos & — cos 2)sin§ s+ % (A.3)
The asymptotic result for X > 1 is
—2j N7 sin ¢g exp(—j X) 1
I ~ F(lalVX) = s——=—] - A4
2 sin%.‘l Sgn(a) (Ial ) 2 ’]'KX|a| ( )
The expression for I3 is
o0 _ 2 o0
I = /25 exp(~jX) (A3_ / i’ﬂs'l(:%‘ﬁds + Zo Ry(€) exp(~Xs?) ds) (A5)
with
cos € sin {,-\/3_(-— cos § + cos &
A3 = lim " J P
é—do sin £(cos & — cos %)
—N cos ¢
— ——=¥0 A.6
i ()
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and

cos £ sin 7§v' As

R3(¢) =

cos & — cos 2 - s+7°;'
The asymptotic evaluation of (A.5) yields
I ~ —2jnNsgn(a)cos goexp(—jX)F(|a|vVX)

+exp(—jX)

X V2a cos % — €os %9
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Appendix B

Evaluation of Integrals

In this appendix the integrals

(>4 . 2
F= exp(—jkusin® Bo(1 — p)) du (B.1)
=
and
F= /F(\/?ku sin fo| cos %BD exp(—jkusin® Bo(1 — p)) du (B.2)

1A

are calculated. It is noted that i < 1. Thus, applying the substitution t2 = uksin® Bo(1 — p)
and assuming that sin® Bo(1 — ) # 0, the integral F; becomes

2 > o]
exp(—jt?)dt (B.3)
\[(1 - #)Slnﬂox/%—

which is expressed in terms of the modified Fresnel function F (3.22)

_ WrepGLlip =) g T B.4
Vik(l - )smﬂo (VI =) (B4

where L = kl4sin? By. For sin® Bo(1 — p) = 0 the integral F; is singular.

1=

The integral F, can be rewritten as

F, = \/7/ exp(jku sin® Bo(p + cos ¢o)) / exp(—jt?) dt du (B.5)

V2kusin B} cos @-I
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which for sin® Bo(u + cos ¢g) # 0 is evaluated using integration by parts

o0

. kw sin? 00
o i e
° ° msinﬁolcos%o-l 1A

) . . 2
[ RS ol ),
1A

jksin fo(i + cos go)

vk sin Bo| cos "52—°| p
. u
V2u

—exp(jL(p + cos ¢p)) T 2
—jt?)dt
ik sin? + cos / exp(~J
J Bo(p ¢o) ViTjeos 2|
| cos 2|

+\/2j7rEsinﬂo(p + cos ¢0)F1' (B.6)

Using the expression for Fj in (B.4), the result

exp(L(p—~1)) (_ cos 201y 4 V2 cos 2| —
)( F(VAT]cos 21) + Y22 p( /1T p))) ®7)

2= 7k sin® Bo(u + cos do

is obtained. This expression has a finite limit for sin® Bo(p + cos ¢o) — 0.
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MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability; '

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
‘'surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science. :

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.




